ЭНЕРГИЯ ГИББСА

Для решения одной из основных задач химической термодинамики - установления принципиальной возможности самопроизвольного протекания процессов - необходимо иметь объективный количественный критерий. Выше было показано, что действующими си­лами в различных процессах (в том числе и химических) выступают две конкурирующие тенденции или два противоположных фактора:

1. Энергетический, или энтальпийный, обусловленный стремлением системы пе­рейти в состояние с наименьшей энергией, например, при р=const понизить эн­тальпию (𝛥H< 0);

2. Структурный, или энтропийный, обусловленный стремлением системы перейти в состояние с максимальной степенью разупорядоченности, т.е. повысить энтро­пию (𝛥S>0).

Если в ходе реакции степень беспорядка не изменяется (𝛥S=0), то направление процесса определяется изменением энтальпии и процесс проходит самопроизвольно в ЭНЕРГИЯ ГИББСА направлении уменьшения энтальпии (𝛥H< 0).

Если процесс происходит без изменения энтальпии (𝛥H=0), то фактором, определяю­щим направление реакции, является энтропия и процесс пойдет самопроизвольно в сторону её увеличения (𝛥S >0).

Если одновременно изменяются и энтальпия, и энтропия, то направление самопроиз­вольного протекания процесса определяется суммарной движущей силой реакции. Самопро­извольно реакция протекает в том направлении, в котором общая суммарная движущая сила системы будет уменьшаться.

С учетом одновременного действия этих двух противоположных факторов, такой движущей силой (функцией состояния) для реакций, протекающих при постоянной темпера­туре и давлении, является энергия Гиббса (G), называемая также изобарно-изотермическим потенциалом, или свободной энергией.

В качестве критерия для определения ЭНЕРГИЯ ГИББСА направления самопроизвольного протекания химических процессов (при р=const используется изменение энергии Гиббса 𝛥G или

𝛥G=G2- G1 (1.27)

В зависимости от знака её изменения, возможны три случая.

1. 𝛥G < 0, реакция термодинамически возможна.

При постоянной температуре и давлении химические реакции протекают самопроизвольно только в направлении уменьшения энергии Гиббса в системе (𝛥G < 0).

Это положение связано с принципом минимума энергии, лежащим в основе второго закона термодинамики, одна из формулировок которого гласит:

«Теплота не может самостоятельно переходить от менее нагретого тела к более нагретому, самопроизвольно возможен лишь обратный процесс».

2. 𝛥G > 0, реакция термодинамически невозможна;

3. 𝛥G = 0, термодинамически возможны как прямая, так и обратная реакция.

Отсутствие изменения ЭНЕРГИЯ ГИББСА энергии Гиббса является термодинамическим условием установления химического равновесия в реакционной системе.

Энергия Гиббса связана с энтальпией, энтропией и температурой следующим образом:

G=H-T*S

Изменение энергии Гиббcа (𝛥G) при этом записывается в виде:

𝛥G = 𝛥Н – Т𝛥S (1.28)

Из уравнения 1.28 следует, что возможность самопроизвольного протекания химических ре­акций зависит от соотношения величины 𝛥Н и Т𝛥S. При этом возможны четыре основных случая:



1. Если 𝛥Н 0, то энергия Гиббcа всегда будет величиной отрицательной (𝛥G < 0). Такие реакции термодинамически возможны при любой температуре.

2. Если 𝛥Н > 0, а 𝛥S 0. Такие реакции термодинамически невозможны при любых температурах.

3. Если 𝛥Н > 0 и 𝛥S > 0, то реакция возможна только при высоких ЭНЕРГИЯ ГИББСА температурах, когда | 𝛥Н | < | Т𝛥S |.

4. Если 𝛥Н <0 и 𝛥S | Т𝛥S |.

Для проведения различных термодинамических расчетов, также как и в случае других термодинамических функций, вводят специальное понятие: стандартная энергия Гиббcа об­разования вещества (𝛥G°обр.298). Это - изменение энергии Гиббса в реакции образования од­ного моля соединения из соответствующих простых веществ, когда все участвующие веще­ства находятся в стандартном состоянии, а реакция проходит при стандартных условиях (из­меряется обычно в кДж/моль). При этом:


documentarxetan.html
documentarxfakv.html
documentarxfhvd.html
documentarxfpfl.html
documentarxfwpt.html
Документ ЭНЕРГИЯ ГИББСА